Quarta-feira, 18 abr 2007 - 09h32
Como vimos no capítulo anterior, a divisão de magnitude utilizada até a segunda metade do século 19 havia sido criada por Hiparco há mais de 2 mil anos e fora desenvolvida a partir de observações feitas através da vista desarmada. Vimos também que o olho humano responde de forma não linear aos impulsos luminosos. Para a criação de uma escala científica de magnitudes seria necessário criar um modelo muito mais complexo e que levasse em conta essa característica de não linearidade do aparelho ótico humano.
Em 1850, dois cientistas alemães, Gustav Theodor Fechner e Erns Heinrich Weber, que estudavam a resposta sensorial humana a estímulos externos, constataram que a resposta visual do aparelho ótico de fato não era linear e sim proporcional ao logaritmo da potência luminosa. Essa descoberta ficou conhecida como Princípio de Fechner-Weber e seria a base teórica da nova escala. Seis anos mais tarde, ancorado no trabalho de Fechner-Weber, o astrônomo inglês Norman Pogson criou um modelo matemático muito preciso para medições de brilhos estelares. De forma engenhosa, Pogson preservou completamente o sistema qualitativo de Hiparco, usado até então, e aplicou a ele seu novo modelo matemático, quantitativo e mensurável. Para ajudar em seu trabalho, Pogson fez uso de um fotômetro, que ainda era uma novidade naquela época, e comparou o brilho de estrelas de 1ª magnitude com estrelas de 6ª magnitude. Após diversas medições Pogson confirmou as observações de Herschel, onde a diferença de brilho entre a 1ª e 6ª magnitudes (cinco magnitudes) era de 100 vezes.
Pogson definiu então sua escala de magnitudes onde uma diferença de 5 pontos corresponderia a uma variação de 100 vezes na intensidade do brilho de um objeto. A escala de Pogson tinha também o mérito de ser logarítmica, validando a base teórica de Fechner-Weber.
Uma vez criada a escala de magnitudes os astrônomos passaram a medir o brilho de diversas estrelas e algumas delas foram usadas como referências de brilho. Dessa forma, a estrela Vega, na constelação de Lira, passou a representar o valor zero na escala. Como a escala era inversa, estrelas e objetos mais brilhantes que Vega teriam números negativos e estrelas mais fracas teriam magnitudes maiores. Pela escala de Pogson, Sirius, a estrela mais brilhante do céu tem magnitude -1.4. Vênus, durante sua fase de maior brilho, -5, enquanto a magnitude da Lua cheia é de -13. O Sol tem magnitude de -27 e o limite da visão humana é de 6.0.
A não ser para fazer comparações a grosso modo, atualmente magnitude é medida através de fotômetros ultra sensíveis, que permitem estimar brilhos com precisão de várias casas decimais. Desta forma podemos estimar facilmente as diferenças entre magnitudes. Por exemplo: quantas vezes a estrela Epsilon, a Intrometida da constelação do Cruzeiro do Sul, é mais brilhante que o planeta Urano? Epsilon: Magnitude de 3.6 Outro exemplo: Qual a diferença entre a estrela Vega e o planeta Vênus: Vega: Magnitude zero Chegamos então, ao fim deste pequeno tutorial. Agora que você aprendeu bastante sobre o sistema de magnitudes, não ficou bem mais fácil entender o céu? LEIA MAIS NOTÍCIAS
Se você precisa de uma base de dados de latitude e Longitude das cidades brasileiras, clique aqui.
|
Apolo11.com - Todos os direitos reservados - 2000 - 2024
"Grande negócio faríamos comprando o homem pelo que ele vale e vendendo pelo que ele pensa que vale" - Napoleão Bonaparte -